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Antiderivative
 Inverse of differentiation is called Integration. Suppose 

F‘(x)=f(x), then F(x) is called the integral or 
antiderivative of f(x).

 In general if F(x) is the antiderivative of f(x) and C is 
any constant then F(x)+C is also antiderivative of f(x) 
as 
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It means that if f(x) possesses an antiderivative then 
it possesses infinitely many antiderivatives.



Indefinite Integral

 Let f(x) is any function, then collection of all 
antiderivatives of f(x) is know as indefinite integral of 
f(x) and it is denoted by .)( dxxf

Hence iff CxFdxxf += )()(( ) )()( xfCxF
dx

d
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where F(x) is antiderivative of f(x) and C is 
constant of integration.



Points to remember

Sign of integration

→

→




dxxf )( Integration of f(x) with respect to x



Some Basic Formulas:
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Some Properties of Integration
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Some Solved Problems
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Q.1. Evaluate 

, where C is constant
of integration
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Integration by Substitution
So many problems of integration can be solved easily 
by method of substitution. Two fundamental 
deductions are given below:
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Note: Here we substitute f(x)=t

f '(x)dx=dt

and then integrate.



Solution by Substitution Method

Q.1. Evaluate  −+
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Q.2. Evaluate 

Sol.
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To solve integrals of the form:
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Here we will use the following trigonometric relations: 
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Example:

Q.1. Evaluate  dxxx 4cos6cos2

Sol. ( ) ( ) 
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To solve integrals of the form:

 dxxx nm cossin , where m and n are positive integers.

1. If m is odd then substitute cos x = t.

2. If n is odd then substitute sin x = t.

3. If both m and n are odd then we can substitute  

either cos x = t  or  sin x = t.



Example:

Q.1. Evaluate  dxxx 36 cossin
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Some Special Integrals
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Examples:
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Q.2. Evaluate 
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Product Rule of Integration
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dx

du
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here u and v both are functions of ‘x’. u is the first 
function and v is the second function.



Tips for choosing 1st and 2nd function

I    L    A    T    E
Inverse 

Trigonometry

Functions

e.g. sin¯¹x,

cos¯¹x Logarithmic

Functions

e.g. log(x) 

Algebraic

Functions

e.g. x, x³+2
Trigonometry

Functions

e.g. cos(2x),

tan(x)

Exponential

Functions

e.g. exp(x) 

We choose first function which appears first in the word



Some Problems on Product Rule

Q.1. Evaluate  dxxx 2cos
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Q.2. Evaluate 
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To solve integrals of the form:
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Q.1. Evaluate  
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Definite 
Integral



Definite Integral
 Let f(x) be any function and F(x) be the antiderivative

of f(x) defined on [a , b], then

  )()()()( bFaFxFdxxf
b
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is called the definite integral of f(x) with respect to x 
from x=a to x=b.

 ‘a’ is called the lower limit of integration and ‘b’ is 
called the upper limit of integration.

 Note: While evaluating definite integral, arbitrary 
constant ‘C’ is not added as it cancels automatically.



Some Solved Problems
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Some Standard Results
1.  To evaluate 
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where n is positive integer.

Case (i) : When n is an odd positive integer
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Case (ii) : When n is an even positive integer
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2.  To evaluate 
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where n and m both are positive integer.
Case (i) : When either n or m or both are odd.
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Case (ii) : When either n or m or both are odd.
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Some Solved Problems
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Q.3. Evaluate 
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Applications 
of 

Integration



Definite Integral as Area Under 
a Curve

 If f(x) be a continuous non-negative function  in         
[a , b]. Then the area bounded by the curve y=f(x), the 
ordinates x=a, x=b and the x-axis is given by
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How to find the area under a curve, 
between x=A, x=B and 

above the x-axis?

Area Under the Curve



It is possible to find the exact area by letting the 
width of each rectangle approach zero.  Doing this 

generates an infinite number of rectangles.
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As the number of rectangles used to approximate the area of 
the region increases, the approximation becomes more accurate.



=    um  (height) • (base)

Area  sum of the areas of the rectangles

= ( )f x x
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a

b
The formula looks 
like an integral.



The Fundamental Theorem of 
Calculus 

( )Area  
B

A
f x dx=  ( ) ( )F B F A= −

( ) ( )where F x f x =



Conclusion
 As the number of rectangles used to approximate the 

area of the region increases, the approximation 
becomes more accurate.

 It is possible to find the exact area by letting the width 
of each rectangle approach zero.  Doing this generates 
an infinite number of rectangles.

 The Fundamental Theorem of Calculus enables us to 
evaluate definite integrals.  This empowers us to find 
the area between a curve and the x-axis.



Some Solved Problems

Q.1. Evaluate the area under the curve y= 2x+1, between  

the ordinates x=0, x=2 and the x-axis.

Sol. The given curve is y= 2x+1. Also y is continues 
non-negative function between x=0 and x=2.

Thus the curve lies above the x-axis. 
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Q.2. Find the area under the curve y²=x, between  the 

ordinates x=1, x=4 and the x-axis in the first quadrant.

Sol.  y²=x is a right handed parabola which is symmetric 
about x-axis. Area bounded by this parabola between 
x=1 and x=4 in first quadrant is given by: 
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Numerical Integration
 Numerical integration is a process to evaluate the 

definite integral from the tabulated vales of the 
Integrand. We will the following rules to find the 
approximate area under the curve:

1.  Trapezoidal Rule

2.  Simpson’s Rule



1. Trapezoidal Rule

y = f(x)

x₁ x₂ x₃ x₄ xn xn+1

y₁ y₂
y₃

y₄ Yn Yn+1

A
B

x=a x=b

Let AB be the graph of the 
curve y=f(x) between x=a 
and x=b.

Divide the interval [a , b] 
into n equal subintervals. 

So width of each subinterval  
is 
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and there corresponding n+1 
values of y i.e. 1321 ,,...,,, +nn yyyyy



Now area under AP is approximately equal to the area 
of the Trapezium ALNM

So, Total area under the curve AB is given by

= Sum of Areas of all Trapeziums 
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2. Simpson’s Rule
Let AB be the graph of the curve y=f(x) between x=a and x=b.

Divide the interval [a , b] into 2n equal subintervals. 

So width of each subinterval  is

As number of intervals is even so that the number of 
ordinates is odd.

be the ordinates. 

.
n

ab
h

−
=

122321 ,,...,,, +nn yyyyy

The approximate area under the curve is given by:
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Observations:
 In the Simpson’s one third rule n is always even.

 In the Trapezoidal rule n may be even or odd.

 The results given by Simpson’s rule are more 
accurate than the results given by Trapezoidal rule.

 n = number of subintervals

 a = lower limit

 b = upper limit
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Q.1. Find the area under the curve 2xy = by  Trapezoidal

Ans. Here
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Some Solved Problems
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Q.2. Evaluate  +
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Using Trapezoidal rule: 
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Q.3. Evaluate by  Simpson’s rule using 8 equal 

Ans. Here
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